

Mountains & Minds

Introduction

Optimizing Boron Maintenance Fertilization for Alfalfa

A. Sapkota^{1*}, J.A. Torrion², R.N. Stougaard², D.M. Staudenmeyer¹, E.C. Glunk¹ ¹Department of Animal and Range Sciences, Montana State University, Bozeman MT. ²Northwestern Agricultural Research Center (NWARC), Kalispell, MT *Corresponding author: anees.zenith1@gmail.com

Results and Discussion

- Alfalfa (*Medicago sativa* L.) accounts for approximately 72% of total hay production in Montana (NASS, 2015).
- Alfalfa has the highest boron (B) demand among many crops (Rathore, 2015).
- A 46 to 62% increase in forage yield response has been reported in applying 3-4 lb B per acre (IPNI, 2014).
- Regular supply of B during growing season is essential to address B deficiency to limit effects on growth and productivity (Malhi & Karamanos, 2013; Herrera-Rodríguez et al., 2010).
 To improve alfalfa production and forage quality, strategic B fertilization needs to be determined for various soils and environmental conditions in Montana
- No significant differences (P= 0.441) were found in alfalfa yields at Creston site.
- Second harvest yields in Dillon were significantly impacted (P= 0.049).
- Protein content at the Dillon site was higher than expected, averaging 29.9% amongst all treatments.
- All other hay quality parameters were within expected ranges at both sites.

Objective

• Evaluate the impact of applying B at different rates and timing on the yield and nutrient content of alfalfa.

Materials and methods

- Research was conducted at the NWARC in Creston, MT and at a producer's farm in Dillon, MT.
- The research was established as a randomized complete block design with five treatments and four replications. • The B treatments were a) 0.0 lb, b) 0.25 lb at the beginning and 0.25 lb applied mid-season, c) 0.50 lb at the beginning of season and 0.50 lb applied mid-season, d) 1.0 lb at the beginning and 1.0 lb applied mid-season, and e) 2.0 lbs applied at the beginning of the season. • Liquid B formulation (10% B AgriSolutionsTM) was used as B fertilizer and was applied using a backpack sprayer in 20 GPA of water. • Yield and quality samples were collected at 10% bloom at each site. • Three cuttings were harvested at the Creston site, whereas two cuttings at Dillon. • Plant tissues were analyzed for B and other nutrient concentration, and forage quality.

• The effect of B application on yield observed at Dillon site shows the potential of B application on alfalfa

performance.

Weather patterns at Creston and Dillon, 2015Creston TempDillon TempCreston Rain

References

- Herrera-Rodríguez, M. B., González-Fontes, A., Rexach,
 J., Camacho-Cristóbal, J. J., Maldonado, J. M., and
 Navarro-Gochicoa, M. T., 2010. Role of boron in
 vascular plants and response mechanisms to boron
 stresses. Plant Stress, 4:115-122.
- International Plant Nutrition Institute (IPNI), 2014.
 Boron. Nutri-facts No. 7: Agronomic factsheets on crop nutrients. GA, USA.
- Malhi, S. S., & R. Karamanos., 2013. Feasibility of B fertilization on canola and alfalfa in Canadian Prairies. Accessed at http://bit.ly/29xB5kp
 National Agricultural Statistics Service (NASS), 2015., Montana 2015 agricultural statistics. USDA-NASS, Mountain Region MT Field Office, Helena MT.
 Rathore, A., 2015. Boron: An important element for agricultural productivity. Asian J. of Multidisciplinary Studies, 3(2): 26-28.

1.00 0.25 0.50 1.00 2.00 Boron (lb)

5 E Conclusions

- The effect of B application on yield observed at the Dillon site was promising.
- Severe drought at Creston site in 2015 and insufficient irrigation availability may have contributed to the no yield differences, illustrating the importance of soil water availability on plant nutrient uptake.
- Research is warranted to investigate the impact of B and different irrigation based on crop water use demand on alfalfa production and forage quality.

Acknowledgements

We would like to thank the MT Agricultural Experiment Station and MT Fertilizer Tax Advisory Committee for their support of this project.